Gewächshaussimulation

Nachfolgend beschreibe ich die Entwicklung einer Gewächshaussimulation mithilfe eines OpenFOAM-Modells, das insbesondere den Feuchtetransport berücksichtigt. Das Hauptziel ist es, ein Simulationswerkzeug bereitzustellen, das es den Benutzern ermöglicht, das Klima im Gewächshaus zu modellieren und zu analysieren. Ziele Entwicklung eines OpenFoam-Modells, das die Strömung von Luft und die Transportprozesse von Feuchtigkeit […]

1D-Interface Problem

1D-Interface-Problem: Temperaturverlauf für zwei Medien mit signifikanten Unterschieden in den Wärmeleitkoeffizienten, was zu einem deutlichen Temperaturgradienten führt

Der Temperaturverlauf in der Umgebung eines Kontaktbereiches wird mithilfe des nachfolgenden Modellproblems analysiert (1D-Interface Problem). Für die numerische Lösung der heat equation in komplizierten 3-D-Geometrien lassen sich hiermit Rückschlüsse zur Auflösung des evtl. großen Temperaturgradienten (Feinheit des Gitters im Kontaktbereich) bzw. zur Konstruktion von Ansatzfunktionen fürs XFEM-Verfahren gewinnen. Das Modellproblem […]

Radiosity equation

\( \def\x{{\bf x}} \def\y{{\bf y}} \def\out{{\rm out}} \newcommand{\Spro}[2]{\langle {#1},{#2} \rangle} \) Die radiosity equation ist eine Integralgleichung, die den Strahlungs- bzw. Energieaustausch zwischen diffusen grauen Oberflächen modelliert. Sie lautet \begin{equation} \label{IGLqout2} q_\out (\x) = \epsilon \, \sigma \, T^4(\x) + \rho \, \int_\Gamma k(\x,\y) \, q_\out (\y) \, d\y, \end{equation} […]

Hemisphärische Kugelflächenfunktionen

Kugelflächenfunktionen sind mathematische Funktionen, die auf der Oberfläche einer Kugel definiert sind. Sie spielen eine wichtige Rolle in der Lösung von partiellen Differentialgleichungen. Die Kugelflächenfunktionen beschreiben die räumliche Verteilung von Strahlung, Schall oder elektrischen Feldern in einer kugelförmigen Umgebung. So werden z.B. Kugelflächenfunktionen verwendet, um die Verteilung von Gravitations- oder […]

Rendering equation

\( \def\x{{\bf x}} \def\y{{\bf y}} \newcommand{\Spro}[2]{\langle {#1},{#2} \rangle} \) Die Rendering Equation, kurz REQ, beschreibt, ebenso wie ihre kleinere Schwester, die Radiosity Equation, den Energieaustausch zwischen Oberflächen. Sie lautet \begin{equation} \label{RTE} L(\x,\omega) = L_e(\x,\omega)+\int_{2 \pi} f(\x, \omega, \omega^\prime) \, L( h(\x,\omega^\prime), -\omega^\prime) \,\cos \theta^\prime d{\omega^\prime}. \end{equation} Bezeichnungen (hier klicken zum […]