Zeitreihenanalyse mit LSTM

In diesem Beitrag möchte ich erste Resultate aus der Implementierung und Anwendung eines Long Short-Term Memory (LSTM)-Netzwerks in C++ mit der libtorch-Bibliothek vorstellen. Ziel war es, die Leistungsfähigkeit eines LSTM-Modells für Zeitreihenanalysen, insbesondere bei der Vorhersage eines verrauschten Sinus-Signals, zu untersuchen. Das LSTM-Modell hat dabei gezeigt, wie effektiv es Muster […]

PINNs — Physikalisch Informierte Neuronale Netze

In diesem Beitrag beschreibe ich die Entwicklung und Implementierung eines einfachen neuronalen Netzwerks, das die Sinusfunktion approximieren kann. Die Methodik folgt hierbei den physikalisch informierten neuronalen Netzen (PINNs), welche maschinelles Lernen mit physikalischen Gesetzen kombinieren, um Modelle zu erstellen, die physikalische Prinzipien einhalten. PINNs haben den großen Vorteil, dass sie […]

Speedup mit tbb::concurrent_unordered_set

Die C++ Standard-Klassen std::set und std::map bzw. ihre unsortierten Varianten std::unordered_set und std::unordered_map (assoziative Container) sind nicht thread-safe. Eine thread-safe Alternative sind die entsprechenden Container (tbb::concurrent_set, tbb::concurrent_unordered_set, …) aus der frei verfügbaren Intel-Bibliothek Threading Building Blocks (TBB). Dazu ein Beispiel: für eine FEM-Berechnung sei ein 3D-Modells mittels Tetraeder trianguliert. Üblicherweise […]