1D-Interface Problem

Der Temperaturverlauf in der Umgebung eines Kontaktbereiches wird mithilfe des nachfolgenden 1-D-Modellproblems analysiert. Für die numerische Lösung der heat equation in komplizierten 3-D-Geometrien lassen sich hiermit Rückschlüsse zur Auflösung des evtl. großen Temperaturgradienten (Feinheit des Gitters im Kontaktbereich) bzw. zur Konstruktion von Ansatzfunktionen fürs XFEM-Verfahren gewinnen. Zwei, jeweils einseitig unendlich […]

Hemisphärische Kugelflächenfunktionen

Mittels der Transformation $\theta \rightarrow 2\,\cos(\theta)-1$, die das Intervall $[0,\pi/2]$ nach $[-1,1]$ abbildet, lassen sich Kugelflächenfunktionen auf der Halbkugel erklären. Basisfunktionen Gautron [1] stellt eine Basis aus Kugelflächenfunktionen für die Hemisphäre vor: $$ \newcommand{\R}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} $$ Seien $l \in \N$, $m \in \Z$ mit $|m| \leq l$, $\phi […]