Modulares Potenzieren

\(\newcommand{\Mod}[1]{\ \mathrm{mod}\ #1}\)Für einen Primzahltest (kleiner Fermatscher Satz) wird die Auswertung von$$a^{p-1} \Mod{p} , \qquad 0< a < p , \quad a,p \in \mathbb{N}$$ für große Zahlen $a$ und $p$ benötigt. Die naive Berechnung, bestimme erst $a^{p-1}$ und dann die Restklasse, ist aussichtslos: sind $a$ und $p$ 10-stellig, dann besitzt […]

Mehrgitterverfahren

Mehrgitterverfahren sind in der Lage große Gleichungssysteme mit mehreren Millionen Unbekannten, die sich aus der Diskretisierung von physikalischen Simulationsmodellen ergeben und bestimmte Anforderungen erfüllen, schnell zu lösen. Für klassische Iterationsverfahren verschlechtert sich die Konvergenzrate mit zunehmender Feinheit des Gitters. Anders bei den Mehrgittermethoden. Hier bleiben die guten Konvergenzeigenschaften auch für […]