Radiosity equation

\( \def\x{{\bf x}} \def\y{{\bf y}} \def\out{{\rm out}} \newcommand{\Spro}[2]{\langle {#1},{#2} \rangle} \) Die radiosity equation ist eine Integralgleichung, die den Strahlungs- bzw. Energieaustausch zwischen diffusen grauen Oberflächen modelliert. Sie lautet \begin{equation} \label{IGLqout2} q_\out (\x) = \epsilon \, \sigma \, T^4(\x) + \rho \, \int_\Gamma k(\x,\y) \, q_\out (\y) \, d\y, \end{equation} […]

Modulares Potenzieren

\(\newcommand{\Mod}[1]{\ \mathrm{mod}\ #1}\) Für einen Primzahltest, basierend auf den kleinen Fermatscher Satz, wird die Auswertung von $$ a^{p-1} \Mod{p}, \qquad 0 < a < p , \quad a,p \in \mathbb{N} $$ für große Zahlen $a$ und $p$ benötigt. Diese Operation nennt man diskrete Exponentialfunktion oder modulare Exponentiation. Die naive Berechnung, […]

Mehrgitterverfahren

\( \def\x{{\bf x}} \def\y{{\bf y}} \newcommand{\Spro}[2]{\langle {#1},{#2} \rangle} \) Mehrgitterverfahren sind in der Lage große Gleichungssysteme mit mehreren Millionen Unbekannten, die sich aus der Diskretisierung von physikalischen Simulationsmodellen ergeben und bestimmte Anforderungen erfüllen, schnell zu lösen. Im Gegensatz zu klassischen Iterationsverfahren, deren Konvergenzrate mit zunehmender Feinheit des Gitters abnimmt, behalten […]